metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

E Yang,^a* Yao Kang^b and Gu-Yong Chen^a

^aCollege of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China, and ^bThe State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yangeli66@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.020 Å R factor = 0.074 wR factor = 0.193 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorobis(N-methylaniline)palladium(II)

The title complex, $[PdCl_2(C_7H_9N)_2]$, has crystallographic inversion symmetry. It forms a layered structure through $N-H\cdots$ Cl hydrogen bonds. The Pd^{II} ion is in a square-planar coordination.

Received 11 April 2006 Accepted 17 May 2006

Comment

Although many studies have been reported for $C_6H_5NH_2$ compounds (Chen *et al.*, 2002) and related complexes (Newkome *et al.*, 1982; Navarro-Ranninger *et al.*, 1983*a,b*; Bell *et al.*, 1966), no complex has been reported which contains the $C_6H_5NH(CH_3)$ ligand. We report here the first $C_6H_5NH(CH_3)$ complex, *viz.* [PdCl₂($C_7H_9N)_2$], (I).

The X-ray crystallographic analysis of (I) reveals that the Pd atom, on an inversion centre, is coordinated in a squareplanar fashion by the Cl and N atoms (Fig. 1). The Pd—N and Pd—Cl bond distances are comparable to those in $[PdCl_2(C_6H_5NH_2)_2]$ (Chen *et al.*, 2002). There are pairwise N—H···Cl hydrogen bonds that link the complexes together, forming layers (Fig. 2). These hydrogen bonds are slightly shorter than those in $[PdCl_2(C_6H_5NH_2)_2]$ complexes (Chen *et al.*, 2002).

Experimental

A mixture of $C_6H_5NH(CH_3)$ (10 ml), PdCl₂ (0.17 g) and CH₃CN (20 ml) was stirred at about 353 K for 2 h and then filtered. The filtrate was kept at room temperature for several days to give yellow crystals of the title complex, (I).

Figure 1

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Crystal data

 $\begin{bmatrix} PdCl_2(C_7H_9N)_2 \end{bmatrix} \\ M_r = 391.62 \\ Monoclinic, P2_1/n \\ a = 6.1411 (11) \\ A \\ b = 15.501 (3) \\ A \\ c = 8.5024 (17) \\ A \\ \beta = 103.685 (3)^{\circ} \\ V = 786.4 (3) \\ A^3 \end{bmatrix}$

Data collection

Bruker SMART 1K diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.678, T_{\max} = 0.860$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0909P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.074$	+ 3.5006P]
$wR(F^2) = 0.193$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
1373 reflections	$\Delta \rho_{\rm max} = 1.38 \text{ e} \text{ Å}^{-3}$
88 parameters	$\Delta \rho_{\rm min} = -1.18 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Z = 2

 $D_x = 1.654 \text{ Mg m}^{-3}$

 $0.35 \times 0.22 \times 0.10 \text{ mm}$

2765 measured reflections

1373 independent reflections

888 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.51 \text{ mm}^{-1}$

T = 293 (2) K

Prism, yellow

 $R_{\rm int} = 0.070$

 $\theta_{\rm max} = 25.0^{\circ}$

Table 1

Selected geometric pa	rameters (A, °).	
Pd1-N1	2.070 (8)	Pd1-Cl1	

N1-Pd1-Cl1	94.2 (3)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdots Cl1^i$	0.91	2.49	3.302 (10)	149
Summatry and (i) y	1			

Symmetry code: (i) x - 1, y, z.

All H atoms were placed at calculated positions, and refined with isotropic displacement parameters, using a riding model $[C-H = 0.93 \text{ or } 0.96 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C); \text{ N}-\text{H} = 0.91 \text{ Å} \text{ and } U_{iso}(\text{H}) = 1.2U_{eq}(\text{N})]$. In the final difference map, the deepest hole is 1.03 Å from atom Pd1 and the highest peak is 0.99 Å from Pd1.

2.302 (3)

View of the extensive hydrogen bonding (dashed lines) between complexes.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Siemens, 1994)); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Bell, J. D., Hall, D. & Waters, T. N. (1966). Acta Cryst. 21, 440-442.

- Chen, Y. B., Li, Z. J., Qin, Y. Y., Kang, Y., Wu, L. & Yao, Y. G. (2002). Chin. J. Struct. Chem. 21, 530–532.
- Navarro-Ranninger, M. C., Martinez-Carrera, S. & Garciá-Blanco, S. (1983a). Acta Cryst. C39, 186–188.
- Navarro-Ranninger, M. C., Martinez-Carrera, S. & Garciá-Blanco, S. (1983b). Acta Cryst. C39, 188–190.
- Newkome, G. R., Fronczek, F. R., Grupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc. 104, 1782–1783.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Siemens (1994). SAINT (Version 4.035) and SHELXTL (Version 5.05). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.